Внутренняя энергия газа определяется. Внутренняя энергия

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому

под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела .

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T,\)

где i - степень свободы. Для одноатомного газа (например, инертные газы) i = 3, для двухатомного - i = 5.

Из этих формул видно, что внутренняя энергия идеального газа зависит только от температуры и числа молекул и не зависит ни от объема, ни от давления. Поэтому изменение внутренней энергии идеального газа определяется только изменением его температуры и не зависит от характера процесса, в котором газ переходит из одного состояния в другое:

\(~\Delta U = U_2 - U_1 = \dfrac {i}{2} \cdot \dfrac{m}{M} \cdot R \cdot \Delta T ,\)

где ΔT = T 2 - T 1 .

  • Молекулы реальных газов взаимодействуют между собой и поэтому обладают потенциальной энергией W p , которая зависит от расстояния между молекулами и, следовательно, от занимаемого газом объема. Таким образом, внутренняя энергия реального газа зависит от его температуры, объема и структуры молекул.

*Вывод формулы

Средняя кинетическая энергия молекулы \(~\left\langle W_k \right\rangle = \dfrac {i}{2} \cdot k \cdot T\).

Число молекул в газе \(~N = \dfrac {m}{M} \cdot N_A\).

Следовательно, внутренняя энергия идеального газа

\(~U = N \cdot \left\langle W_k \right\rangle = \dfrac {m}{M} \cdot N_A \cdot \dfrac {i}{2} \cdot k \cdot T .\)

Учитывая, что k⋅N A = R - универсальная газовая постоянная, имеем

\(~U = \dfrac {i}{2} \cdot \dfrac {m}{M} \cdot R \cdot T\) - внутренняя энергия идеального газа.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U 2 - U 1 . Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

  1. При совершении механической работы . а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела. б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии. в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.
  2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Механическая работа

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Изобарный процесс

Рассмотрим вначале изобарный процесс. Пусть в цилиндре с подвижным поршнем находится газ при температуре T 1 (рис. 1).

Будем медленно нагревать газ до температуры T 2 . Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl . Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = p⋅S тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

\(~A = F \cdot \Delta l = p \cdot S \cdot \Delta l = p \cdot \Delta V,\)

где ΔV - изменение объема газа.

  • Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.
  • Газ выполняет работу только в процессе изменения своего объема.

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0).

  • Если рассматривать работу внешних сил A " (А " = –А ), то при расширении (ΔV > 0) газа А " < 0); при сжатии (ΔV < 0) А " > 0.

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

\(~p \cdot V_1 = \nu \cdot R \cdot T_1, \; \; p \cdot V_2 = \nu \cdot R \cdot T_2,\)

\(~p \cdot (V_2 - V_1) = \nu \cdot R \cdot (T_2 - T_1) .\)

Следовательно, при изобарном процессе

\(~A = \nu \cdot R \cdot \Delta T .\)

Если ν = 1 моль, то при ΔΤ = 1 К получим, что R численно равна A .

Отсюда вытекает физический смысл универсальной газовой постоянной : она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Не изобарный процесс

На графике p (V ) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Если процесс не изобарный (рис. 2, б), то кривую функции p = f (V ) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна

\(~A = \lim_{\Delta V \to 0} \sum^n_{i=1} p_i \cdot \Delta V_i\), или \(~A = \int p(V) \cdot dV,\)

т.е. будет равна площади заштрихованной фигуры .

При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p = f (V ).

Таким образом, видно, что даже при одном и том же изменении объема газа работа будет зависеть от способа перехода (т.е. от процесса: изотермический, изобарный …) из начального состояния газа в конечное. Следовательно, можно сделать вывод, что

  • Работа в термодинамике является функцией процесса и не является функцией состояния.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W . Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

  • работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);
  • количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Нагревание (охлаждение)

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T 1 до температуры T 2 , рассчитывается по формуле

\(~Q = c \cdot m \cdot (T_2 - T_1) = c \cdot m \cdot \Delta T,\)

где c - удельная теплоемкость вещества (табличная величина);

\(~c = \dfrac{Q}{m \cdot \Delta T}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Кроме удельной теплоемкости рассматривают и такую величину, как теплоемкость тела.

Теплоемкость тела C численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C = \dfrac{Q}{\Delta T} = c \cdot m.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Парообразование (конденсация)

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = L \cdot m,\)

где L - удельная теплота парообразования (табличная величина). При конденсации пара выделяется такое же количество теплоты.

Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).

Плавление (кристаллизация)

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda \cdot m,\)

где λ - удельная теплота плавления (табличная величина). При кристаллизации тела такое же количество теплоты выделяется.

Единицей удельной теплоты плавления в СИ является джоуль на килограмм (Дж/кг).

Сгорание топлива

Количество теплоты, которое выделяется при полном сгорании топлива массой m ,

\(~Q = q \cdot m,\)

где q - удельная теплота сгорания (табличная величина).

Единицей удельной теплоты сгорания в СИ является джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 129-133, 152-161.

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Torywild:

Купить диплом в вашей компании я решила, когда переехала в другой город, а среди своих вещей не смогла найти свой диплом. Без него меня бы не взяли на хорошую высокооплачиваемую работу. Ваш консультант меня заверила, что данная информация не разглашается, и документ никто не отличит от оригинала. Сомнения не оставляли, но пришлось рискнуть. Понравилось, что не нужна предоплата. В общем, получила диплом вовремя и меня не обманули. Спасибо!

Оксана Ивановна:

Когда у меня украли диплом, я ужасно расстроилась. Ведь меня как раз в это время уволили, а найти сейчас хорошую работу без диплома о высшем образовании практически невозможно. Благо, соседка подсказала обратиться в вашу организацию. Сначала я отнеслась с недоверием, но решила рискнуть. Позвонила менеджеру компании, объяснила свою ситуацию. И мне повезло! Все сделали оперативно, а главное, пообещали не разглашать мою тайну. Меня волновало, чтобы впоследствии не всплыл факт покупки мной диплома.

Маша Кутенкова:

Спасибо за работу! Заказывала диплом 1991 года. Когда стали поднимать документы, оказалось, что опыта мало, нужна и бумага, подтверждающая образование. У меня ее не было, причем начальница это знала, и сама порекомендовала вашу компанию (видать, сотрудник я ничего так). На документе она мне указала на детали – мол, в каких годах используют тушь или чернила, толщина подписи и т. д. Спасибо за дотошность и качество!

LenOK:

Начитавшись историй о позорных увольнениях сотрудников, у которых дипломы напечатаны на цветном принтере, я пошла подавать документы в универ. Увы, бюджета нет, денег учиться и оплачивать сессии тоже нет, пришлось рисковать. Хотя я очень рада, что познакомилась с вашей компанией. Хоть меня и не взяли на работу с вашим дипломом, ввиду несдачи практического блока, это не ваша вина. Как найду новое место – сразу к вам, без промедлений!

Jerry Terry:

Наблюдая, с каким конфузом вылетел мой коллега с работы за поддельный диплом, было страшно последовать его примеру. Если бы не кума, которая заказывала у вас – не рискнула бы. Она заверила, что здесь все гладко, и моя фамилия будет везде, где надо. На все про все у меня было 4 дня. Спасибо вам за скорость – справились за 3, еще и успели дотошно изучить способы подделки документов, но ваш бланк не подходит под подделку, значит, сойдет за оригинал.

Андрей:

Никогда бы не мог подумать, что придется покупать диплом. Дочь после школы уехала в Польшу на заработки, когда вернулась через 5 лет, захотела устроиться дизайнером одежды в местный дом моды. Без диплома никто брать ее на работу не хотел. Понимал, что, если не устроится на эту работу, опять уедет. Прошарился вечер в интернете, и на утро с документами дочери был уже в офисе. Через неделю вместе с ней забрал диплом, и она наконец-то осталась работать в своем городе на желанной должности. Не представляете, как я вам благодарен!

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотиче­ски движутся и взаимодействуют друг с другом, по­этому любое тело обладает внутренней энергией. Внутренняя энергия - это величина, характери­зующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц си­стемы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U=3/2 т/М RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существуют два способа изменения внутрен­ней энергии: теплопередача и совершение механи­ческой работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопере­дача бывает трех видов: теплопроводность (непо­средственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излуче­ние (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче яв­ляетсяколичество теплоты (Q).

Эти способы количественно объединены в за­кон сохранения энергии, который для тепловых про­цессов читается так. Изменение внутренней энергии замкнутой системы равно сумме количества теп­лоты, переданной системе, и работы, внешних сил, совершенной над системой. D U= Q + А, где D U- изменение внутренней энергии, Q - количество теп­лоты, переданной системе, А - работа внешних сил. Если система сама совершает работу, то ее условно обозначают А". Тогда закон сохранения энергии для тепловых процессов, который называетсяпервым за­коном термодинамики, можно записать так: Q = Α" + D U, т. е. количество теплоты, переданное систе­ме, идет на совершение системой работы и измене­ние ее внутренней энергии.

2) Генератор переменного тока. Трансформатор. Успехи и перспективы электрификаци СССР.

Переменный ток в электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Пусть плоский виток имеет площадь S и вектор индукции B составляет с перпендикуляром к плоскости витка угол j. Магнитный поток Ф через площадь витка в данном случае определяется выражением. При вращении витка с частотой n угол j меняется по закону., тогда выражение для потока примет вид. Изменения магнитного потока создают ЭДС индукции, равную минус скорости изменения потока. Следовательно, изменение ЭДС индукции будет проходить по гармоническому закону. Напряжение, снимаемое с выхода генератора, пропорционально количеству витков обмотки. При изменении напряжения по гармоническому закону напряженность поля в проводнике изменяется по такому же закону. Под действием поля возникает то, частота и фаза которого совпадают с частотой и фазой колебаний напряжения. Колебания силы тока в цепи являются вынужденными, возникающими под воздействием приложенного переменного напряжения. При совпадении фаз тока и напряжения мощность переменного тока равна или. Среднее значение квадрата косинуса за период равно 0.5, поэтому. Действующим значением силы тока называется сила постоянного тока, выделяющая в проводнике такое же количество теплоты, что и переменный ток. При амплитуде I­­­­­­­­­­­­­­ max гармонических колебаний силы тока действующее напряжение равно. Действующее значение напряжения также в раз меньше его амплитудного значения Средняя мощность тока при совпадении фаз колебаний определяется через действующее напряжение и силу тока.


Преоьразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется с помощью трансформаторов. Трансформатор состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две (иногда более) катушки с проволочными обмотками. Одна из обмноток называется первичной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т.е приборы и устройства, потребляющие электроэнергию, называется вторичной. Действие трансформатора основано на явлении электромагнитной инддукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях. В первичной обмотке, меющей ЭДС индукции e1 равноа N1e. Во вторричной обмоткеполная ЭДС e2=n2e (N2-число витков вторичной обмотки). Отсюда следует, что e1/e2=n1/n2 Обычно активное сопротивление трансформаторных обмоток мало и им можно пренебречь. U1/u2=e1/e2=n1/n2=k k=коэффициент трансформации. При K>1 трансформатор понижающий, при K<1 – пониж. Повышая с помошью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока(и наоборот). Суммарные потери энергии в трансформаторах не превышают 2-3%.

Н аука о тепловых явлениях называется термодинамика. Термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем.

При изучении основ термодинамики необходимо помнить следующие определения. Физическая система, состоящая из большого числа частиц - атомов или молекул, которые совершают тепловое движение и, взаимодействуя между собой, обмениваются энергиями, называется термодинамической системой .

Состояние термодинамической системы определяется макроскопическими параметрами , например удельным объемом, давлением, температурой.

Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей.

Термодинамика рассматривает только равновесные состояния , т.е. состояния, в которых параметры термодинамической системы не меняются со временем.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом.

Термодинамическим процессом называется переход системы из начального состояния в конечное через последовательность промежуточных состояний.

Процессы бывают обратимыми и необратимыми.

Обратимым называется такой процесс, при котором возможен обратный переход системы из конечного состояния в начальное через те же промежуточные состояния, чтобы в окружающих телах не произошло никаких изменений. Обратимый процесс является физической абстракцией. Примером процесса, приближающегося к обратимому, является колебание тяжелого маятника на длинном подвесе. В этом случае кинетическая энергия практически полностью превращается в потенциальную, и наоборот. Колебания происходят долго без заметного уменьшения амплитуды ввиду малости сопротивления среды и сил трения.

Любой процесс, сопровождаемый трением или теплопередачей от нагретого тела к холодному, является необратимым . Примером необратимого процесса является расширение газа, даже идеального, в пустоту. Расширяясь, газ не преодолевает сопротивления среды, не совершает работы, но, для того чтобы вновь собрать все молекулы газа в прежний объем, т. е. привести газ в началь­ное состояние, необходимо затратить работу. Таким образом, все реальные процессы являются необратимыми.

Изменение внутренней энергии газа в процессе теплообмена и совершаемой работы.

Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом .

Внутренняя энергия – это сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема (закон Джоуля).

Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:

Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия

U тела зависит наряду с температурой T также и от объема V : U = U (T , V ).

Таким образом, внутренняя энергия системы зависит только от её состояния и является однозначной функцией состояния, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела . Она не зависит от того, каким путем было реализовано данное состояние.

Внутреннюю энергию тела можно изменить разными способами :

  1. Совершение механической работы.
  2. Теплообмен.


Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную).

Например, газ подвергается сжатию в цилиндре под поршнем площадью S. Поршень, сжимая газ, движется с некоторой скоростью v. Молекулы газа, беспорядочно двигаясь, ударяются о поршень. После упругого удара молекулы о поршень скорость молекулы возрастает, а значит возрастает и её кинетическая энергия, что приводит к увеличению внутренней энергии газа.

При сжатии газа его внутренняя энергия увеличивается за счет совершения поршнем механической работы. При расширении газа его внутренняя энергия уменьшается, превращаясь в механическую энергию поршня.

При сжатии газа внешние силы совершают над газом некоторую положительную работу A".

В то же время силы давления, действующие со стороны газа на поршень, совершают работу

A = –A".

Если объем газа изменился на малую величину ΔV , то газ совершает работу pS Δx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение.

При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна .

В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

или в пределе при ΔV i → 0:

Работа численно равна площади под графиком процесса на диаграмме (p , V ):

Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.

Рисунок 2.
Три различных пути перехода из состояния (1) в состояние (2).
Во всех трех случаях газ совершает разную работу, равную площади под графиком процесса.

Процессы, изображенные на рис. 2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный.

Процессы которые можно проводить в обоих направлениях, называются обратимыми .

В отличие от газа, жидкости и твердые тела мало изменяют свой объем, так что во многих случаях работой, совершаемой при расширении или сжатии, можно пренебречь. Однако, внутренняя энергия жидких и твердых тел также может изменяться в результате совершения работы. При механической обработке деталей (например, при сверлении) они нагреваются. Это означает, что изменяется их внутренняя энергия.

Внутренняя энергия тела может изменяться не только в результате совершаемой работы, но и вследствие теплообмена .

При тепловом контакте тел внутренняя энергия одного из них может увеличиваться, а внутренняя энергия другого – уменьшаться. В этом случае говорят о тепловом потоке от одного тела к другому. Передача энергии от одного тела другому в форме тепла может происходить только при наличии разности температур между ними.

Приведем в соприкосновение два тела с раз­ными температурами. Пусть температура первого тела выше, чем второго. В результате обмена энергиями температура пер­вого тела уменьшается, а второго - увеличивается. В рассмат­риваемом примере кинетическая энергия хаотического движе­ния молекул первого тела переходит в кинетическую энергию хаотического движения молекул второго тела.

Тепловой поток всегда направлен от горячего тела к холодному .

Процесс передачи внутренней энергии без совершения меха­нической работы называется теплообменом.

Мерой энергии, полу­чаемой или отдаваемой телом в процессе теплообмена, служит физическая величина, называемая количеством теплоты .

Количеством теплоты Q , полученной телом, называют изменение внутренней энергии тела в результате теплообмена.

Количество теплоты Q является энергетической величиной. В СИ количество теплоты измеряется в единицах механической работы – джоулях (Дж).

До введения СИ количество теплоты выражали в калориях.

Калория - это количество теплоты, необходимое для нагревания 1 г дистиллиро­ванной воды на 1°С, от 19,5°С до 20,5°С.

Единица, в 1000 раз большая калории, называется килокалорией (1 ккал = 1000 кал). Соотношение между единицами: 1 кал =4,19 Дж.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются.

Чтобы нагреть тело массой m от температуры t 1 до температуры t 2 ему необходимо сообщить количество теплоты

Q = cm (t 2 t 1 )

Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

c = Q / (mΔT).

Во многих случаях удобно использовать молярную теплоемкость C :

C = M · c, где M – молярная масса вещества.

При передаче тепла от одного тела к другому всегда выполняется уравнение теплового баланса , по которому количество теплоты Q 1 , отданное первым телом, равно количеству теплоты Q 2 , полученному вторым телом.

Q 1 = Q 2

Теплота и работа являются не видом энергии, а формой ее передачи, они существуют лишь в процессе передачи энергии.

В реальных условиях оба способа передачи энергии системе в форме работы и форме теплоты обычно сопутствуют друг другу.

Первое начало термодинамики.

На рисунке изображены энергетические потоки между термодинамической системой и окружающими телами. в результате теплообмена и совершаемой работы:

Величина Q > 0, если тепловой поток нправлен в сторону термодинамической системы. Величина A > 0, если система совершает положительную работу над окружающими телами.

Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, то есть изменяются ее макроскопические параметры (температура, давление, объем).

Процессы теплообмена и совершения работы сопровождаются изменением ΔU внутренней энергии системы.

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q , переданной системе, и работой A , совершенной системой над внешними телами.

ΔU = Q – A.

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Если между телами, составляющими замкнутую систему, действуют силы трения, то часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы –

№ 8, стр. 163

Определите Q - теплоту, необходимую для плавления свинца массой m=10 кг, находящегос при температуре плавления. Удельная теплота плавления свинца λ=25 кДж/кг. (ответ Q=250 кДж)

Термодинамика в отличие от молекулярно-кинетической теории, изучает физические свойства макроскопических тел (термодинамических систем), не вникая в их молекулярное строение. Термодинамический метод базируется на законе сохранения и превращении энергии.

Физические величины, характеризующие термодинамическую систему, называются термодинамическими параметрами . К ним относятся: объем, давление, температура, концентрация и др. Любое изменение в термодинамической системе, связанное с изменением ее параметров, называется термодинамическим процессом , а уравнение, связывающее между собой параметры системы, называется уравнением состояния . Примером такого уравнения является уравнение Менделеева - Клапейрона (6.1)

Внутренняя энергия идеального газа

Важнейшей характеристикой термодинамической системы является ее внутренняя энергия U, складывающая из потенциальной энергии взаимодействия частиц системы и кинетической энергии их теплового движения.

Внутренняя энергия является функцией состояния системы, т.е. в каждом состоянии система обладает вполне определенным значением внутренней энергии, не зависящим от того, каким путем система перешла в это состояние.

Так как в идеальном газе потенциальная энергия молекул равна нулю (считается, что молекулы между собой не взаимодействуют), то внутренняя энергия идеального газа равна полной кинетической энергии всех его молекул. Обозначив внутреннюю энергию одного моля газа через U μ , а среднюю кинетическую энергию молекулы через , можем записать для одного моля газа:

U μ = N A (6.18)

где N A – число Авогадро.

Подставляя значение из формулы (6.12), получим внутреннюю энергию для одного моля газа:

(6.19)

Если число молей , то для любого количества вещества

(6.20)

Следовательно, внутренняя энергия газа пропорциональна его массе, числу степеней свободы молекулы и абсолютной температуре газа.

Первый закон термодинамики

Внутреннюю энергию термодинамической системы можно изменить за счет работы, которую либо внешние тела совершают над ней, либо сама система совершает над внешними телами. Например, приложив внешнюю силу, мы сжимаем газ, в результате чего его температура повышается, а, следовательно, увеличивается и внутренняя энергия. Внутреннюю энергию можно изменить также, передавая системе (или отнимая у нее) некоторое количество теплоты.

Согласно закону сохранения энергии, изменение внутренней энергии системы должно равняться сумме полученной ею теплоты и совершенной над ней работы . Эта формулировка закона сохранения энергии применительно к термодинамическим системам носит название первого закона термодинамики :

В дифференциальной форме первый закон термодинамики имеет вид:

Необходимо подчеркнуть, что в отличие от внутренней энергии, являющейся функцией состояния, работа и количество теплоты зависят не только от начального и конечного состояний системы, но и от пути, по которому происходило изменение ее состояния. Следовательно, величины dQ и dА не являются полными дифференциалами, по которым может производиться интегрирование. Для того, чтобы подчеркнуть это обстоятельство для бесконечно малых приращений тепла и работы применяют более корректное обозначение Q и A и тогда первый закон примет вид: Q = dU + A (6.22)

Найдем в общем виде работу, совершаемую газом, (рис.6.6, а). Если газ, расширяясь, перемещает поршень на расстояние dx, то он производит работу (см. формулу 2.19):

A = F · dx = P · S · dx = PdV, (6.22)

где S – площадь поршня; Sdx = dV – изменение объема газа в цилиндре.

Полная работа, совершаемая газом при изменении его объема от V 1 до V 2 , равна:

Графически процесс изменения состояния газа при его расширении изображается участком кривой 1-2 в координатах Р – V (рис.6.6, б). Точки 1 и 2 соответствуют начальному и конечному состояниям газа. Элементарная работа PdV изображается заштрихованной площадью. Полная работа, определяемая формулой 6.23, изображается площадью V 1 – 1 – 2 - V 2 под кривой 1 – 2.

Теплоемкость идеальных газов .

Количество тепла, которое надо сообщить телу, чтобы изменить его температуру на 1 К, называется теплоемкостью тела С.

Согласно этому определению

, [С] = Дж/К (6.24)

Теплоемкость единицы массы вещества называется удельной теплоемкостью С уд

Теплоемкость одного моля называется молярной теплоемкостью С м.

, [С м ] = Дж/моль · К (6.26)

где ν = m/μ – число молей.

Как следует из формул (6.25) и (6.26), удельная теплоемкость связана с молярной соотношением:

С м = С уд · μ (6.27)

Теплоемкость газа зависит от того, при каких условиях она определяется: при постоянном объеме или постоянном давлении. Покажем это, для чего запишем первый закон термодинамики с учетом формулы (6.22):

δQ = dU + PdV (6.28)

Если газ нагревается при постоянном объеме (изохорный процесс), то dV=0 и работа РdV = 0. В этом случае δQ = dU, т.е. передаваемое газу тепло идет только на изменение его внутренней энергии. Теплоемкость газа при постоянном объеме:

С учетом формулы (6.20)

(6.29)

и тогда изохорная теплоемкость

Для одного моля (m/µ = 1) молярная теплоемкость при постоянном объеме

Теперь, с учетом равенства (6.28), найдем теплоемкость при постоянном давлении (изобарный процесс):

(при этом учли, что dU/dT = C V). Из (6.32) следует, что С P > C V . Это объясняется тем, что при нагревании при P = const сообщенное газу тепло идет не только на увеличение его внутренней энергии, но и на совершение работы.

Для одного моля идеального газа уравнение Менделеева – Клапейрона имеет вид PV=RT и потоку PdV=RdT. Учитывая это, получим уравнение Майера , выражающее связь между молярными теплоемкостями при постоянном давлении и постоянном объеме:

С мр = С mv + R (6.33)

Учитывая выражение (6.31) можно записать в виде

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение С P к С V:

(6.35)

Величина γ называется коэффициентом Пуассона , i – число степеней свободы молекул (см. рис.6.2).

Повышение температуры приводит, как отмечалось выше, к появлению колебательных степеней свободы, в результате чего теплоемкость возрастает. Наоборот, при низких температурах число степеней свободы уменьшается, так как «вымораживаются» вращательные степени свободы и теплоемкость газа уменьшается.

Изопроцессы

Изопроцессом называется процесс, при котором один из параметров термодинамической системы остается постоянным. Связь между параметрами системы дает уравнение Менделеева – Клапейрона.

Изотермический процесс (Т = const) .

В этом случае уравнение состояния имеет вид:

PV = const (6.36)

Для нескольких конкретных состояний газа можно записать:

P 1 V 1 = P 2 V 3 = . . ., = P n V n

График изотермического процесса (изотерма) в координатах P – V изображается гиперболой (рис.6.7).

Подставляя из формулы (6.1) в формулу работы (6.23), получим для изотермического процесса:

(6.37)

Работа изотермического процесса на рис.6.7 численно равна площади под кривой 1-2.

Из формулы 6.29 следует, что изменение внутренней энергии при dT = 0 в изотермическом процессе равно 0. Тогда первый закон термодинамики применительно к изотермическому процессу примет вид Q = A .

т.е. система: либо, получая тепло от внешней среды, совершает работу, расширяясь, либо отдает тепло внешней среде вследствие того, что внешние тела совершают над ней работу, сжимая ее. Следовательно, для того, чтобы при изотермическом расширении температура не падала, к газу необходимо подводить количество теплоты, эквивалентное работе расширения. Наоборот, при сжатии система должна отдавать среде количество теплоты, эквивалентное работе сжатия.

Изобарный процесс (Р = const) .

Уравнение состояния при Р = const имеет вид

Const или

График изобарного процесса в координатах Р – V приведен на рис.6.7. Работа при изобарном процессе (см.6.23)

(6.39)

на графике работа при Р = const численно равна площади прямоугольника под прямой 1-3.

Первый закон термодинамики для изобарного процесса

Изохорный процесс (V = const) .

При изохорном процессе уравнение состояния

Или (6.40)

Поскольку dV = 0, то работа при изохорном процессе равна нулю. Первый закон термодинамики для изохорного процесса имеет вид

т.е. либо вся теплота, сообщаемая системе, идет на увеличение ее внутренней энергии, либо система отдает среде тепло, уменьшая свою внутреннюю энергию.

Адиабатический процесс .

Адиабатическим называется процесс, протекающий без теплообмена с внешней средой(δQ = 0). Близким к адиабатическим являются все быстропротекающие процессы, например, расширение и сжатие горючей смеси в двигателях внутреннего сгорания.

Учитывая, что δQ = 0, запишем первый закон термодинамики для адиабатического процесса:

А = -ΔU (6.41)

Отсюда следует, что если газ совершает работу (адиабатически расширяясь), то А>0, соответственно ΔU<0 и ΔТ<0, т.е. газ охлаждается. Наоборот, при адиабатическом сжатиии газа А<0, тогда ΔU >0 и ΔТ >0, т.е. газ нагревается.

Используя выражение (6.23) и учитывая, (6.20), перепишем равенство (6.41):

(6.42)

Продифференцируем уравнение Менделеева – Клапейрона (6.1):

(6.43)

Исключив из уравнений (6.42) и (6.43) температуру Т, получим

Разделив переменные и учитывая равенство (6.35), найдем

Интегрируя это равенство, получим

γlnV + lnP = const

Или в окончательном виде связь между давлением и объемом газа в адиабатическом процессе:

PV γ = const (6.44)

Это отношение называется уравнением адиабаты или уравнением Пуассона . Кривая адиабаты представлена на рис.6.7, которая падает с ростом объема круче, чем изотерма. Это непосредственно следует из того, что γ>1 (см. также формулу 6.35).

Уравнение Пуассона можно выразить и через другие параметры с помощью уравнения Менделеева – Клапейрона

T γ P 1-γ = const

Вычислим работу расширения газа в адиабатическом процессе. Учитывая равенство (6.42), получим

(6.45)