Альтернативные источники энергии. Виды энергии – известные человечеству типы энергии

На пороге XXI века человек все чаще стал задумываться о том, что станет основой его существования в новой эре. Люди прошли путь от первого костра до атомных электростанций, однако энергия была и остается главной составляющей жизни человека.

Существуют «традиционные» виды альтернативной энергии: энергия Солнца и ветра, морских волн и горячих источников, приливов и отливов. На основе этих природных ресурсов были созданы электростанции: ветряные, приливные, геотермальные, солнечные.

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную роль в мировом балансе, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее.

Потому ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии. В данной работе будут рассмотрена классификация альтернативных источников энергии, способы нахождения новых видов топлива и опыт России и других зарубежных стран в изобретении и использовании энергосберегающих ресурсов.

1. Альтернативные источники энергии

К альтернативным источникам энергии относят энергию Солнца, земли, ветра, воздуха, атомную и биоэнергию.

Солнечная энергия

Солнце - центр нашей системы из 8 планет (не считая мелких, таких как Плутон, Церера и др.), является первичным и главным источником энергии в нашей системе планет. Являясь большим термоядерным реактором, выделяющим громадное количество энергии, оно согревает Землю, приводит в движение и верхние слои атмосферы, океанские течения и реки. Под воздействием солнечных лучей и благодаря фотосинтезу, на нашей планете вырастает около одного квадриллиона тонн растений, дающих в свою очередь жизнь, 10 триллионам тонн животных организмов. Благодаря совместному труду Солнца, воды и воздуха, за миллионы лет, на 3емле накоплены запасы углеводородов - угля, нефти, газа и пр., которые мы сейчас активно расходуем.

Для удовлетворения потребностей человечества в энергоресурсах, на сегодняшний день, требуется сжечь около десяти миллиардов тонн углеводородного топлива в год. Считается, что на 3емле имеется около шести триллионов тонн различных углеводородов. Если взять энергию, поставляемую на нашу планету Солнцем за год, и перевести в углеводородное топливо, которое мы сжигаем, то получим около ста триллионов тонн, что в десять тысяч раз превышает необходимый нам объем энергоресурсов.

Для обеспечения потребностей человечества энергией на несколько веков хватит и сотой доли той энергии, которая доходит от Солнца до Земли за один год, и если мы сможем взять этот процент, то это бы решило многие проблемы с генерацией энергии на многие века вперед. Как взять этот столь необходимый для нас процент солнечной энергии в теории понятно, дело остается за более совершенными технологиями преобразования энергий. Среди возобновляемых источников энергии, солнечная радиация по объемам ресурсов, распространенности, доступности и экологической чистоте наиболее перспективна.

В начале 20 века многие ученые мира, всерьез задумывались об использовании солнечной энергии. Наш соотечественник, основатель теоретической космонавтики К.Э. Циолковский, во второй части своей книги: "Исследования мировых пространств реактивными приборами" писал следующее: "Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два млрд. раз большую, чем та, которую человечество имеет на Земле".

Альберт Эйнштейн основатель всемирно известной теории относительности, в 1921 году был удостоен Нобелевской премии за объяснение законов внешнего фотоэффекта. В 1905 году была опубликована его работа, в которой, опираясь на гипотезу Планка, Эйнштейн описал как именно и в каких количествах кванты света выбивают из металла электроны. Применить данную гипотезу на практике впервые удалось советским физикам в 30-е годы под руководством знаменитого академика А.Ф. Иоффе.

В Физикотехническом институте, были разработаны и созданы первые сернисто-талиевые фотоэлементы, правда, КПД этих элементов не дотягивал до 1%.

Позднее в 1954 году американскими учеными Пирсоном, Фуллерром и Чапином был запатентован первый элемент с КПД порядка 6%. В 70-х годах КПД солнечных фотоэлементов приближался к 10%, но их производство было довольно дорого и экономически неоправданно, посему использование солнечных батарей в основном ограничивалось космонавтикой. Для производства элементов, требовался кремний (Si, силициум) высокой отчистки и особого качества, в сравнении со стоимостью сжигаемых углеводородов, переработка кремния виделась дорогой и неоправданной, хотя данный элемент таблицы Менделеева в изобилии располагается на пляжах в виде песка (SiO 2). Вследствие чего, исследования по разработке технологий в области солнечной энергетики, были урезаны в финансировании или и вовсе свернуты.

К началу 21 века КПД солнечных батарей удалось увеличить до 20%. Несложно догадаться, почему человечество отступило от разработки солнечной энергии. В середине прошлого века наша цивилизация разгадала тайну ядерной энергии, и все силы науки были брошены на поиски новых способов обогащения урана и создание более совершенных ядерных реакторов, в ущерб технологиям для выработки кремния и разработки новых видов солнечных элементов.

Тем не менее, все это выглядит немного странно, учитывая тот факт, что более прогрессивные технологии получения силициума давно существуют. Еще в 1974 году фирмой Siemens (Германия) была разработана технология получения кремния с помощью карботермического цикла, что понизило себестоимость процесса на порядок. Однако для данной технологии требуется уже не обычный песок, а так называемые особо чистые кварцы, запасы которых в нашей стране самые крупные, что, несомненно, выгодно для России, ведь имеющихся запасов хватит на всех.

Солнечные батареи как форма использования солнечной энергии

Солнце - мощнейший источник энергии в нашей солнечной системе. Давление в его внутренней части порядка 100 миллиардов атмосфер, а температура достигает 16 миллионов градусов. До Земли доходит лишь одна двухмиллиардная доля всего излучения. Но даже эта малая часть превосходит по мощности все земные источники энергии (в том числе и энергию земного ядра). Использование солнечной энергии сегодня стало распространенным явлением, а солнечные батареи обретают все большую популярность.
Первые солнечные батареи были использованы в 1957 году при покорении космоса. Их установили на спутник для преобразования солнечной энергии в электрическую, которая была необходима для работы спутника. При создании солнечных батарей используют полупроводниковые материалы, как правило, кремний.

Принцип работы солнечных элементов построен на фотоэлектрическом эффекте - преобразовании энергии света в электричество. Когда солнечная энергия попадает на неоднородный полупроводник (неоднородность может достигаться различными путями, например легированием), в нем создаются неравновесные носители заряда обоих типов. При подключении данной системы к внешней цепи можно «собирать» электроны, соответственно создавая электрический ток. Есть много эффектов, которые отрицательно сказываются на величине получаемого тока (например, частичное отражение солнечных лучей или их рассеяние), поэтому исследовательская работа по созданию наиболее подходящего материала очень актуальна на сегодняшний день.
Солнечные батареи - это большие по площади модули, которые собираются из отдельных элементов. Эти элементы - это обычно небольшие пластины (размеры которых в среднем 130×130мм), с припаянными к ним контактами.
Этот вид энергии абсолютно экологичен, так как нет никаких ядовитых и опасных выбросов в атмосферу, они не загрязняют воду или почву, у них даже отсутствует опасное излучение. К тому же это весьма надежный источник альтернативной энергии - по расчетам ученых солнце будет светить еще несколько миллионов лет. К тому же, энергия солнца абсолютна бесплатна. Другое дело, конечно, что создание самого солнечного элемента является довольно дорогой процедурой.

Но у данного вопроса есть и обратная сторона. Притом, что энергия солнца бесплатна и огромна, она непостоянна. Работа солнечных батарей сильно зависит от погоды. В пасмурную погоду количество вырабатываемого электричества падает в разы, а ночью и вовсе прекращается. Пытаясь как-то справиться с этим, ученые разработали всевозможные аккумуляторы. Но при нагрузке таких огромных солнечных станций, аккумуляторы не выдерживают больше часа. Поэтому использование солнечных батарей возможно только совместно со стабильным источником электроэнергии.
Солнечные батареи распространены в тропических и субтропических регионах. Количество солнечных дней в странах этих регионов максимально, следовательно, максимально и количество вырабатываемого электричества.

Энергию солнца могут использовать не только крупные компании, но и владельцы частных домов. Например в Германии солнечные батареи устанавливаются на крыши домов, что позволяет хозяевам экономить порядка 50% всех затрат на электроэнергию. Учитывая, что стоимость электроэнергии в этой стране довольно высока. В солнечные дни количество перерабатываемой энергии может превышать необходимое. В той же Германии государство скупает эти излишки у частных лиц и перепродает скупленную электроэнергию в ночное время по более низкой цене, чем стимулирует интерес населения к установке солнечных батарей.
В самых безоблачных регионах строятся целые гелиоэлектростанции (ГЕЭС). Принцип их работы несколько отличается от солнечных батарей. Эти солнечные установки концентрируют солнечную энергию и используют ее для приведения в действие турбин, тепловых машин и т.д. В качестве примера можно привести солнечную башню в Испании. Множество зеркал направляют солнечные лучи на ее верхнюю часть, разогревая находящуюся там воду до 250 градусов. Это выгодно по многим параметрам.
Еще одним преимуществом солнечных батарей можно считать их мобильность. Небольшой элемент в условиях яркого солнечного освещения может вырабатывать электроэнергию достаточную, например, для подзарядки сотового телефона или маломощного ноутбука.

Энергия земли

Планета Земля - самый удивительный и загадочный объект, будоражащий умы людей на протяжении многих веков. Она дает жизнь, делясь теплом, водой, пищей, и отбирает ее, обрушиваясь ураганами, землетрясениями, потопами или извержениями вулканов. Для выживания человеку необходима энергия и он берет ее, разворовывая недра нашей планеты: добывает тоннами нефть, уголь, вырубает леса и т.д. Несмотря на то, что наша планета очень богата, ее запасы все же небезграничны. Эта проблема тревожит умы глав государств и научных работников уже не первый год - постоянно ищутся все новые источники альтернативной энергии.

Одним из возможных решений этой насущной проблемы стала геотермальная энергетика, то есть использование внутреннего тепла земли и превращение его в электроэнергию.

Приблизительная температура земного ядра 5000°С, а давление там достигает 361 ГПа. Такие невероятно высокие значения достигаются вследствие радиоактивности ядра. Оно разогревает близлежащие пласты породы, создавая тем самым горячие потоки, размером с континенты. Они медленно поднимаются из глубины земных недр, заставляя двигаться континенты, провоцируя извержения вулканов и землетрясения.

При удалении от ядра температура постоянно уменьшается, но жар при извержении вулканов говорит о том, что даже «низкая» для ядра температура, просто колоссальна. Тепловая энергия земли огромна, но загвоздка в том, что современные технологии пока не позволяют использовать ее если не полностью, то хотя бы наполовину.

В некотором смысле земное ядро можно считать вечным двигателем: есть сильное давление (а оно благодаря гравитации будет всегда), значит есть высокая температура и атомные реакции. Но пока не создано ни технологий, ни материалов, которые смогли бы выдержать столь жесткие условия и позволить добраться до ядра. Сегодня мы можем использовать тепло приповерхностных слоев, температура которых несравнима с тысячами градусов, но вполне достаточна для выгодного ее использования.
Существует несколько способов использования геотермальной энергии. Например, можно использовать горячие подземные воды для обогрева жилых домов, всевозможных предприятий или учреждений. Но больший интерес вызывает использование тепловой энергии для преобразования ее в электроэнергию.

Геотермальную энергию различают по форме, в которой она вырывается из-под земли:

  • «Сухой пар» . Это пар, вырывающийся из-под земли без капелек воды и примесей. Его очень удобно использовать для вращения турбин, вырабатывающих электрическую энергию. А конденсированная вода, как правило, остается довольно чистой и ее можно возвращать обратно в землю или даже в ближайшие водоемы.
  • «Влажный пар» . Это смесь воды и пара. В данном случае задача несколько усложняется, поскольку приходится сначала отделить пар от воды, а лишь потом его использовать. Капли воды могут повредить турбины.
  • «Система с бинарным циклом» . Из-под земли вырывается просто горячая вода. Используя эту воду, изобутан переводят в газообразное состояние. А затем используют изобутановый пар для вращения турбин. Эту воду можно использовать для непосредственного обогрева помещений - централизованное теплоснабжение.

Недостаток таких установок в том, что они привязаны географически к районам геотермальной активности, которые расположены совсем неравномерно по поверхности земли. В России источники геотермальной энергии расположены на Камчатке, Курильских островах и Сахалине - экономически плохо развитых регионах. Поскольку в них слабо развита инфраструктура, они малонаселенны, обладают сложным рельефом местности и высокой сейсмической активностью, эти районы являются экономически невыгодными для создания там тепловых станций. Но ведь это не может стать ограничением тепловой энергии нашей планеты.
В середине 19 века британский физик Уильям Томсон заложил фундамент технологии теплового насоса. Принцип его работы можно объяснить схематично в виде трех замкнутых контуров.

Во внешнем контуре циркулирует так называемый теплоноситель, который поглощает тепло окружающей среды. Обычно этот контур представляет собой трубопровод, который максимально приближен к источнику внешнего тепла (грунт, река, море и т.д.) с циркулирующим антифризом (незамерзающей жидкостью).

Во втором контуре циркулирует вещество, которое испаряется благодаря теплу вещества первого контура, и конденсируется, отдавая тепло веществу последнего третьего контура. Во втором контуре в качестве испаряемого вещества используется хладагент (вещество с низкой температурой испарения). В этот же контур встроены конденсатор, испаритель и устройства, меняющие давление хладагента. Третий контур и является нагревательным элементом, который передает тепло помещениям.
Имеется еще один проект, преобразующий тепло земной коры в электроэнергию. Этот проект разработали ученые одной из национальных лабораторий министерства энергетики США. Технология заключается в бурении двух неглубоких скважин глубиной около четырех километров, которые доходят до твердых скальных пород. Далее скалы дробятся при помощи подземных взрывов, увеличивая глубину скважины. Одна из скважин наполняется водой, где она нагревается до 176 градусов. Притом, что температура сравнительно небольшая, ее вполне хватает для обогрева помещений и выработки электроэнергии. Затем, вода поднимается по другой скважине (ее стараются располагать на значительном удалении от первой) и поступает на электростанцию.

Преимуществом данного метода стала его независимость от геотермальной активности местности - он пригоден для установки почти везде.
Уже достаточно давно умы ученых будоражит еще один вид энергии Земли - энергия магнитного поля. На сегодняшний день не создано ни одного реально существующего проекта. Но огромный потенциал магнитного поля постоянно подталкивает на изобретение все более новых и более хитрых приборов. Одним из которых является электромобиль Тесла. Принцип работы этого прибора так и остался для всех загадкой.

Никола Тесла заменил бензиновый двигатель обычного автомобиля стандартным электромотором переменного тока мощностью в 80л.с., у которого отсутствовали видимые внешние источники питания. Автомобиль мог развивать скорость до 150 км/ч. По заявлению самого ученого машина работала благодаря «эфиру, который вокруг нас!». Современные исследователи полагают, что физик использовал в своем генераторе энергию магнитного поля нашей планеты. Он мог настраивать свою высокочастотную схему переменного тока на резонансную частоту 7,5 Гц. Но это всего лишь догадки.
Такие альтернативные источники энергии, как тепловая или магнитная, вскоре станут не фантазиями или гипотезами, а необходимостью. Ну а благодаря своим преимуществам: высокой экологичности, независимости от местоположения и погодных или климатических условий, низким уровнем затрат на производство и, конечно же, неисчерпаемости, эти источники энергетики становится весьма перспективными.

Энергия ветра Начало формы

Воздух - это ветер, один из альтернативных источников энергии на нашей планете.

Современность определяет ветер, как поток воздуха, движущийся вдоль земной поверхности со скоростью свыше 0,6 м/с. Он возникает из-за неравномерного распределения атмосферного давления, которое постоянно меняется, смещая огромные пласты воздуха из зоны высокого давления в зону низкого. В древности же обо всех этих хитрых определениях не имелось ни единого представления, но это не помешало древним людям научиться использовать энергию ветра в своих целях.

Еще до нашей эры умелые египтяне переплывали Нил на первых парусных лодках. В итоге это стало первым шагом в развитии парусного дела. Не менее изобретательными оказались и викинги. Их боевые парусные корабли, подгоняемые сильными порывами ветра, превосходили по скорости и легкости все корабли Западной Европы, наводя страх и ужас на местное население. Создание первых ветряных мельниц в 12 веке привело к рождению первого печеного хлеба, без которого невозможно представить себе ни один современный стол.

Использование ветряной энергии нашло большое применение в Голландии. Эта страна часто затапливается, поскольку находится ниже уровня моря, и использование энергии ветра в 14 веке для откачки воды с полей позволило ей войти в список самых богатых стран на то время. Впоследствии другие страны Европы стали использовать такой альтернативный источник энергии для достижения обратного эффекта - подачи воды на засушливые поля.

К 19 веку ветряки стали уже привычным делом на людей. К 1900 году в одной только Дании насчитывалось больше двух тысяч ветряных мельниц. А создание первой ветряной мельницы, преобразующей ветер в электроэнергию, стало началом нового витка в истории современной энергетики - ветроэнергетики.

Ветроэнергетика стала весьма перспективной, потому что ветер является возобновляемым источником энергии. Развитие данной отрасли энергетики идет очень активно: к 2008 году общая установленная мощность всех ветрогенераторов составила 120 гигаватт. Поскольку мощность ветрогенератора зависит от площади лопасти генератора, имеется тенденция к увеличению их размеров, и эти сооружения мельницами не назовешь - теперь это турбины.

Большое распространение данный вид энергетики получил в США. К середине 20 века там было построено несколько сотен тысяч турбин. С течением времени ветряные фермы стали весьма распространенным явлением в ветряной Калифорнии, да и по всей территории штатов, а после выхода в свет закона об обязательной скупке коммунальными предприятиями лишней электроэнергии, полученной из ветра, у рядовых граждан, эта область стала привлекательной и материально.

Важным является экологический аспект ветроэнергетики. По данным Global Wind Energy Council к 2050 году эта отрасль поможет уменьшить ежегодные выбросы углекислого газа (СО 2) на 1,5 млрд. тонн. Турбины занимают совсем небольшую площадь ветряной фермы (порядка 1%), следовательно, остальная площадь открыта для сельского хозяйства. Это имеет большое значение в небольших густонаселенных странах.
Значение ветроэнергетики возросло в 1973 году, когда ОПЕК ввело эмбарго на добычу нефти и ежегодно стало отслеживать ее количество. Стоимость на нефть возросла в разы, заставив государства изучать и развивать альтернативные источники энергии. С каждым годом стоимость технологии ветряной электродобычи уменьшается, увеличивая долю ветроэнергетики в общем объёме. На сегодняшний день этот вклад по всему миру составляет всего 2%, но с каждой минутой эта цифра растет.

Энергия воды

Вода - источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека.

Энергия воды - один из первых источников энергии, который люди научились использовать в своих целях. Так принцип работы первых речных мельниц прост и в то же время гениален: движущийся поток воды вращает колесо, преобразуя кинетическую энергию воды в механическую работу колеса. По сути, все современные гидроэлектростанции работают аналогично, только с одним важным дополнением: далее механическая энергия колеса преобразуется в электрическую.

Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:

1. Энергия приливов и отливов . Явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации.

Во время прилива заполняются специальные резервуары, располагающиеся на береговой линии. Резервуары образуются благодаря дамбам. Во время отлива вода начинает свое обратное движение, которое и используется для вращения турбин и преобразования энергии. Важно, чтобы разница высот во время прилива и отлива была как можно больше, иначе подобная станция просто не сможет себя оправдывать. Поэтому приливные электростанции создаются, как правило, в узких местах, где высота приливов достигает хотя бы 10м. Например, приливная станция во Франции в устье реки Ранс.

Но такие станции имеют и свои минусы: создание дамбы приводит к увеличению амплитуды приливов со стороны океана, а это влечет за собой затопление суши соленой водой. Как следствие - изменение флоры и фауны биологической системы, причем не в самую лучшую сторону.
2. Энергия морских волн. Несмотря на то, что природа этой энергии весьма схожа с энергией приливов и отливов, ее все же принято выделять в отдельную ветвь. Данный вид энергии обладает довольно высокой удельной мощностью (приблизительная мощность волнения океанов достигает 15 кВт/м). Если высота волны будет около двух метров, то это значение может увеличиться до 80 кВт/м. Перевести всю энергию волнения в электрическую не удается, но все же коэффициент преобразования довольно высок - 85%.
На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок. Пока эта сфера находится только на стадии экспериментальных исследований.
3. Гидроэлектростанции . Этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему.
У данного типа энергии, по аналогии с остальными, имеются как плюсы, так и минусы. Так же как в случае использования энергии приливов, создание ГЭС приводит к затоплению большой площади и нанесению непоправимого ущерба местной фауне. Но даже с учетом этого обстоятельства можно говорить о высокой экологичности ГЭС: они наносят только локальный ущерб, не загрязняя атмосферу Земли. В попытках уменьшить ущерб, наносимый станциями, разрабатываются все более новые методы их работы, постоянно совершенствуется конструкция самих турбин.

Одним из предложенных методов стало «накачивание» аккумуляторов. Вода, прошедшая через турбины не утекает дальше, а накапливается в больших резервуарах. Когда нагрузка на ГЭС становится минимальной, за счет энергии атомной или тепловой станции сохраненная вода перекачивается обратно вверх и все повторяется. Этот метод выигрывает как по экологическим, так и по экономическим показателям.
Еще одну интересную область использования водной энергии придумали эксперты Комиссии по атомной энергетике в Гренобле, Франция. Они предлагают использовать энергию падающего дождя. Каждая падающая капля, попадая на пьезокерамический элемент, воздействует на него физически, что приводит к возникновению электрического потенциала. Далее электрический заряд видоизменяется (так же как в микрофонах электрический сигнал преобразуется в колебания).

Благодаря многообразию своих форм, вода обладает поистине громадным энергетическим потенциалом. На сегодняшний день гидроэнергетика уже весьма развита и составляет 25% от мирового производства электроэнергии, а, учитывая темпы ее развития можно смело говорить, что она является весьма перспективным направлением.

Атомная энергия Начало формы

В конце 20 века проблема поиска альтернативных источников энергии стала весьма актуальной. Несмотря на то, что наша планета поистине богата природными ископаемыми, такими как нефть, уголь, древесина и т.д., все эти богатства исчерпаемые. Поэтому приходится искать все более новые и совершенные источники энергии.

На протяжении долгого времени человечество находило те или иные варианты решения вопроса альтернативных источников энергии, но настоящим прорывом в истории энергетики стало появление ядерной энергии.

Ядерная теория прошла долгий путь развития, прежде чем люди научились применять ее в своих целях. Все началось еще в 1896 году, когда А.Беккерель зарегистрировал невидимые лучи, которые испускала урановая руда, и которые обладали большой проникающей способностью. В дальнейшем это явление получило название радиоактивности.

История развития ядерной энергии содержит в себе несколько десятков выдающихся фамилий, в том числе и советских физиков. Завершающим этапом развития можно назвать 1939 год - когда Ю.Б.Харитон и Я.Б.Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Далее развитие ядерной энергетики шло семимильными шагами. По самым приблизительным подсчетам энергию, которая выделяется при расщеплении 1кг урана, можно сравнить с энергией, которая получается при сжигании 2500000кг каменного угля.

В период Второй мировой войны все исследования были перенаправлены в военную область. Первым примером ядерной энергии, который человек смог продемонстрировать всему миру, стала атомная бомба, потом водородная.

Лишь спустя годы научное сообщество обратило свое внимание на более мирные области, где применение ядерной энергии могло бы стать действительно полезным. Так начался рассвет самой молодой области энергетики. Стали появляться атомные электростанции (АЭС), причем первая в мире АЭС была построена в городе Обнинске Калужской области.

На сегодняшний день насчитывается несколько сотен атомных электростанций по всему миру. Развитие ядерной энергетики происходило невероятно стремительно. Меньше чем за 100 лет она смогла достигнуть сверхвысокого уровня технологического развития. То количество энергии, которое выделяется при делении ядер урана или плутония, несравнимо велико - это сделало возможным создание крупных атомных электростанций промышленного типа.

Эту энергию получают в результате цепной реакции деления ядер некоторых радиоактивных элементов. Обычно используется уран-235 или плутоний. Деление ядра начинается, когда в него попадает нейтрон - элементарная частица, не имеющая заряда, но обладающая сравнительно большой массой (на 0,14 % больше, чем масса протона). В результате образуются осколки деления и новые нейтроны, обладающие высокой кинетической энергией, которая в свою очередь активно преобразуется в тепло.
Данный вид энергии производят не только на АЭС. Он так же используется на атомных подводных лодках и атомных ледоколах.
Для нормального функционирования АЭС необходимо топливо. Как правило, это уран. Этот элемент имеет широкое распространение в природе, но при этом труднодоступен. В природе не существует залежей урана (как например нефти), он как бы «размазан» по всей земной коре. Самые богатые урановые руды, которые встречаются очень редко, содержат до 10% чистого урана. Уран обычно содержится в урансодержащих минералах в качестве изоморфно замещающего элемента. Но при всем это общее количество урана на планете грандиозно велико. Возможно, в ближайшем будущем новейшие технологии позволят увеличить процент добычи урана.

Столь мощный источник энергии, а значит и силы, не может не вызывать опасений. Постоянно ведутся споры о его надежности и безопасности. Трудно оценить какой ущерб наносит атомная энергетика окружающей среде. Однако если бы завтра на нашей планете закончились все запасы источников традиционной энергии, то ядерная энергетика, пожалуй, стала бы единственной областью, которая реально смогла бы заменить ее. Нельзя отрицать ее преимущества, но и не стоит забывать о возможных последствиях.

Биоэнергия

С понятием биоэнергии связанно немало путаницы.

По определению биоэнергетика - это отрасль альтернативной энергетики, то есть энергетики, которая считается возобновимой. Количество потребляемой энергии всем человечеством в год - просто огромно. Поэтому встает вопрос о том, сможет ли хоть какой-нибудь ресурс восстанавливаться соответственно скорости его потребления.

Биоэнергия - это совокупность целого спектра альтернативных источников энергии. Этот спектр объединяют одним общим понятием биомасса. По сути это результат жизнедеятельности всех живых организмов нашей планеты.

Ежегодно прирост биомассы на планете достигает 130 млрд. тонн сухого вещества. Это соответствует 660 000 ТВтч в год, притом, что мировой общественности требуется всего лишь 15000 ТВтч в год.
Сегодня более 99% автовладельцев используют топливо, производимое из нефти. И с каждым днем количество автомобилей на дорогах растет. Нефтяное топливо едва ли можно считать возобновляемым. Количество нефти с каждым годом неумолимо уменьшается, что приводит к повышению цены на нее. А поскольку экономика многих стран только развивается, то, несмотря на повышение цен, спрос на нефть все равно будет расти. Замкнутый круг, выходом из которого может стать биотопливо.
Долгое время биотопливо считалось неконкурентоспособным, потому что уступало ископаемому топливу и по производимой мощности и по сложности внедрения. Но постоянно развивающиеся технологии помогли решить эти проблемы. Биотопливо бывает разных типов:

  • жидким : метанол, этанол, биодизель;
  • газообразным: водород, сжиженный нефтяной газ (пропанобутановые фракции);
  • твердым : дрова, уголь, солома.

Недавно созданное жидкое биотопливо отличается своей экологичностью и доступностью, но помимо этого имеет и еще одно важное преимущество. Для перехода на жидкое биотопливо не понадобиться существенных изменений в структуре двигателей и оборудования. Само биотопливо представляет собой сырьё, получаемое при переработке, как правило, семян рапса, сои, стеблей сахарного тростника или кукурузы. Развивается еще много направлений получения органического топлива (например, из целлюлозы).

Природный газ, водород и подобное сырье нельзя отнести к возобновляемым источникам, поэтому их можно считать в определенной степени полумерой при переходе на биотопливо. К тому же, немало трудностей связанно с внедрением такой технологии. Например, водородный двигатель мог бы стать очень перспективным представителем своего «семейства», но для нормального функционирования автомобиля было бы необходимо закрепить целую цистерну на крыше авто, что не очень удобно. А в сжатом состоянии водород очень взрывоопасен.

На помощь пришли новейшие изобретения в области нанотехнологий - разрабатывается проект по созданию нанокапсул для хранения водорода и других взрывоопасных газов. Каждая нанокапсула (модифицированная нанотрубка) будет наполняться определенным количеством молекул газа и «закупориваться» фуллереном, что позволит разделить газ на порции, сделав его безопасным.

Гораздо проще обстоит ситуация с биодизельным топливом. Биодизельное топливо - это растительное масло переэтерифицированное метанолом (иногда может использоваться этанол или изопропиловый спирт). Реакция обычно проходит при нормальном давлении и температуре 60 °С. Растительные масла получают из самых различных представителей флоры (более 20 наименований), но лидером остается Рапс. Это маслянистое растение, которое легко выращивается в сельскохозяйственных условиях.
Но на этом преимущества биоэнергетики не заканчиваются. Помимо того, что она отвечает на актуальные вопросы современности о поиске альтернативных источников энергии и ее экологичности, важно отметить и материальный аспект.

Импорт нефти сильно сказывается на бюджете страны, учитывая постоянное повышение цены на нее. А биотопливо наоборот дешевеет с каждым днем. Отсюда можно утверждать, что экономия при переходе на биотопливо может оказаться весьма существенной.

В феврале 2006 года Евросоюзом был принят документ «Стратегия для биотоплива», который описывает рыночный, законодательный и исследовательский потенциал по увеличению использования биотоплива. Пусть сегодня процентная доля биотоплива в мировой топливной энергетике не достигает даже одного процента, с таким количеством преимуществ ситуация должна сильно измениться уже в ближайшее время.

2. Проблемы энергосбережения в России и за рубежом, пути их решения

Поистине эпохальное для России событие по итогам 2009 года это принятие Федерального закона «Об энергосбережении и повышении энергетической эффективности». За последние несколько лет его проект выдержал не одну редакцию, а бурные дебаты вокруг отдельных положений этого документа приобрели общенациональный масштаб, выплеснувшись за пределы профессионального сообщества и близких к законодательным органам кругов.

Энергорасточительность российских граждан не случайна. В первую очередь она обязана историческим и климатическим факторам. Другим весомым показателем является неразвитость законодательства по сравнению с обширнейшим законодательным опытом развитых стран. В России законотворчество в области энергосбережения только началось, инициативу на комиссии по модернизации и технологическому развитию экономики 30 сентября 2009 года проявил президент Дмитрий Медведев. А 11 ноября 2009 года Государственная дума приняла уже в третьем чтении федеральный закон «Об энергосбережении и повышении энергетической эффективности».

По своему действию он охватит всех и каждого, со времен принятия Налогового кодекса Госдума не рассматривала законопроект, столь масштабно затрагивающий быт буквально каждого гражданина и производство каждой компании. С точки зрения государства это крайне важные шаги. Конечная цель мероприятия - экономия топлива.

Энергопотребление в России достигает почти 1млрд тонн условного топлива. По оценке Минэнерго России, при снижении энергоемкости до европейского уровня наше потребление снизилось бы до 650 млн. тонн условного топлива.

Рассмотрим в качестве важнейших энергосберегающих направлений энергосберегающие лампочки и пассивные дома.

Энергосберегающие лампочки

Обычная лампа накаливания, которая повсеместно используется более сотни лет для освещения, хорошо греет и плохо светит. Ее световая отдача (то есть количество излучаемых люменов на единицу потребляемой мощности) крайне невысока. Аргумент в пользу альтернативных ламп, по большому счету, один - они дают столько же света при меньшем потреблении энергии и более длительном сроке службы.

Однако позиции Дмитрия Медведева по идее замены ламп накаливания на энергоэффективные получила весьма неоднозначное отражение в последующих действиях чиновниках.

С 1 января 2011 года запрещаются приобретение для государственных и муниципальных нужд любых ламп накаливания и оборот ламп накаливания от 100 Вт и выше. Далее законопроект декларирует, что с 1 января 2013 года может быть введен запрет для 75-ваттных лампочек, а с 1 января 2014 года и 25-ваттных. Шедевр «лампы 75 и 25 ватт, может, будут запрещены, а может, нет» не позволяет предприятиям даже в минимальном приближении сформировать свои инвестиционные программы. Нарастить импорт компактных люминесцентных ламп можно в одночасье, а для организации производства нужно как-никак иметь точный план на некоторый, хоть сколько-нибудь приличный срок. Можно с уверенностью прогнозировать, что при таком подходе российскому бизнесу будет крайне сложно инвестировать в новое производство.

Принятый в данной редакции закон приведет к очевидной лихорадке на рынке осветительных приборов, росту импорта дешевых компактных люминесцентных ламп и распространению мнимых фобий, связанных с вредностью и ядовитостью этих ламп.

Принятый закон требует от всех нас тотального перехода на приборный учет производимых, передаваемых и потребляемых энергетических ресурсов. Поскольку прежде чем, что-то сэкономить, надо знать, сколько ты потребил.

Два года отводится населению на тотальное оснащение счетчиками своей собственности - квартир, офисов, складов, заводских помещений. Оплата установки и замены счетчика возлагается на потребителей. Закон «Об энергосбережении» прямо затронет карман граждан. Помимо лампочек придется потратиться как минимум на счетчики энергии, газа, воды и тепла.

Учет электрической энергии, природного газа, тепла и воды технически и экономически решаемая проблема, имеющая наработанные стандартные решения. Однако парадоксальным образом существующая нормативная база сейчас препятствует населению переходить на учет ресурсов по счетчику. Особенно ярко это проявляется в учете воды. Устанавливая счетчик сейчас, гражданин вместо экономии затрат может получить возросшие расходы. До момента, когда все до единого жителя дома сделают то же самое, установивший счетчик будет умножать показания своего прибора на коэффициент, зависящий от числа прописанных в доме, потерь воды, расхода на общедомовые нужды, установленных нормативов потребления воды для жителей, не имеющих счетчиков, а также с учетом фактического потребления.

Чтобы избавиться от этой дикости, когда расходы во многом зависят не от потребления, а от числа прописанных в доме соседей и частоты их водных процедур, мало принять закон об энергосбережении и энергоэффективности. Потребуется тщательно и детально переписать постановление правительства РФ от 23 мая 2006 года №307 «О порядке предоставления коммунальных услуг гражданам».

Следующим шагом по снижению потребления тепла, воды и электрической энергии является перечень мероприятий, которые граждане должны провести сами. Пока списка в природе не существует. Сам перечень и принципы его внедрения установит правительство РФ. Утверждать же его будут региональные власти. Каждые пять лет требования к энергетической эффективности зданий, а, следовательно, и к серьезности проводимых мероприятий будут ужесточаться.

Данные мероприятия будут включать не только замену лампочек. Наверно, будет что-то по замене советских окон на современные стеклопакеты. По большому счету, это все, что доступно отдельно взятому гражданину в отдельно взятой квартире или офисе. Возможны мероприятия, связанные с утеплением и энергосбережением всего дома. В идеальном варианте грамотная управляющая компания сможет заключить энергосервисный договор, который позволит жильцам оплатить утепление фасада в рассрочку, за счет экономии от снижения потребления тепла. Вместо типовых технических решений и финансово-правовых механизмов улучшения действующего жилого фонда закон надеется на живое творчество масс и жэков.

К сожалению, законопроект практически не замечает и принципиальной разницы между новым строительством и уже построенными зданиями. В области нового строительства вполне может сработать «лампочкин» метод запрета, например, на холодный бетон и поощрения теплого пористого кирпича. Среди пяти главных принципов создания теплого и светлого дома числятся в основном те, что используются строителями с древнейших времен: хорошая теплоизоляция стен, крыши и фундамента, правильная ориентация окон по сторонам света и снижение теплопотерь через окна.

Работающий, эффективный закон об энергосбережении должен состоять из множества конструкций, которые вызовут интерес повышать энергоэффективность у сотни и тысячи рыночных субъектов. В российском законопроекте есть лишь их зачатки. Перечислим имеющиеся в законе стимулирующие меры.

Предприятие теперь сможет получить инвестиционный налоговый кредит (отсрочку уплаты налога на прибыль или регионального налога на период от одного года до пяти лет), если повысит энергетическую эффективность производства товаров, выполнения работ, оказания услуг.

В отношении объектов генерации представлены более строгие критерии. Создание объекта электрической или тепловой генерации с КПД более 57% или использующего возобновляемые источники энергии дает основание на налоговый кредит до 30% стоимости приобретаемого оборудования. В этот пока еще короткий перечень правительство России обязано внести другие объекты и технологии, имеющие высокую энергетическую эффективность.

Наше отставание в энергоэффективности означает, что мы должны, не теряя времени на поиск пути, использовать опыт других стран. В поддержку плана действий «группы восьми», куда входит и Россия, и по поручению лидеров стран «восьмерки» Международное энергетическое агентство (МЭА) подготовила специальный 586-страничный доклад «Перспективы энергетических технологий: сценарии и стратегии развития до 2050 года». МЭА уверено, что первостепенное значение для решения задач безопасной и экологически чистой энергетики, изменения климата и устойчивого развития имеет энергоэффективность. В своем докладе агентство привело множество требуемых для этого технологий, уже разработанных или близких к коммерциализации. Так, новые строения могут быть на 70% более эффективными по экономии энергии, новые системы освещения - на 30-60% более экономичными, тепловые потери через современные окна - в три раза меньше (все это в сравнении с типичными западными технологиями, а не типичными российскими).

Не утруждая себя более полной интеграцией, освоением международного опыта и более детальной проработкой соответствующих механизмов в российском законодательном поле, авторы законопроекта, видимо, понадеялись на действенность штрафов. Теперь за энергорасточительность уполномоченный орган сможет в массовом порядке налагать штрафы на граждан и организации.

По подсчетам некоторых аналитиков, 40% потребляемой в России энергии можно "высвободить" за счет простой экономии. Данный факт означает, что в нашей стране ежегодно тратится впустую, почти половина всей производимой энергии, и не зря нам присваивают статус, одной из самых энергорасточительных стран в мире. Количество впустую сожженной и потерянной энергии сравнимо с объемом всей экспортируемой из России нефти и нефтепродуктов. Каждый день, мы забываем или ленимся гасить свои осветительные приборы, а в масштабах всей страны это уже миллионы, если не миллиарды ламп.

Тем не менее, популярность использования энергосберегающих ламп в нашей стране набирает обороты, спрос на данный товар растет с каждым днем. Интерес к энергосберегающим светилам, вызван не только мировыми тенденциями к энергосбережению, но, и как показывает практика, это и в самом деле, очень практичное решение для освещения жилья.

Чем же отличаются энергосберегающие лампы, от традиционных ламп накаливания и является ли экономия электроэнергии единственной отличной характеристикой? Давайте попробуем разобраться в этих вопросах. Для начала рассмотрим, как устроена энергосберегающая лампа.

Энергосберегающая лампа состоит из 3 основных компонентов: цоколя, электронного блока, люминесцентной лампы.

Цоколь - предназначен для подключения лампы к осветительным прибором.

Электронный блок - (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает запуск и дальнейшее поддержание процесса свечения люминесцентной лампы. Также Электронный блок преобразует поступающее напряжение 220В в напряжение, необходимое для работы люминесцентной лампы.

Люминесцентная лампа - собственно сама светящаяся часть лампы, наполнена инертным газом (аргоном) и парами ртути. Внутренние стенки лампы покрыты люминофорным покрытием.

Теперь ознакомимся с характеристиками энергосберегающих ламп.
Энергосберегающие лампы еще называют - Компактные Люминесцентные Лампы или сокращенно - КЛЛ.

Принцип работы у них аналогичен люминесцентным лампам: трубка в форме спирали или система дуговых трубок, наполненная инертным газом (аргоном или ксеноном) и парами ртути. Внутренние стенки лампы покрыты люминофором. Под действием высокого напряжения в лампе происходит движение электронов, они сталкиваются с атомами ртути, при этом образуется ультрафиолетовое излучение, которое, проходя сквозь люминофор, создает видимое нашему глазу свечение.

Исполнение ламп бывает различным, обычно их производят в виде трубок скрученных в спираль, но также компактные образцы, представлены в традиционных формах груши, свечи, шара или цилиндра. В последних образцах уже отсутствует электронный блок (ЭПРА), вернее он есть, просто инженеры умудрились всунуть его в цоколь.

Световой поток и мощность

Мощность указывается в ваттах, зачастую указан и эквивалент по мощности обычной лампочки, выдающей равное с энергосберегающей количества света. Например, если на энергосберегающей лампе написано 8W, то светить она будет как 40W лампочка накаливания. Ниже приведены среднестатистические значения мощности и соответствующего светового потока:
. 5W (25W) - 250 Lm;

  • 8W (40W) - 400 Lm;
  • 12W (60W) - 630 Lm;
  • 15W (75W) - 900 Lm;
  • 20W (100W) - 1200 Lm;
  • 24W (120W) - 1500 Lm;
  • 30W - 150W - 1900 Lm;

Температура света

Данный параметр будет не совсем правильно применять к люминесцентным лампам, так как он берётся из температуры нагретой нити в лампе накаливания, при этом температура измеряется в кельвинах (К). Температура нити накала традиционной лампочки равна 2700 К или 2427 С, при этом лампочка светит жёлтым светом.
Производители люминесцентных ламп придерживаются таких температурных диапазонов:

  • 2700 К - тёплый белый, соответствует свету от обычной лампочки накаливания;
  • 3300-3500 К - белый, не распространенный тип КЛЛ.
  • 4000-4200 К - холодный белый, лампа светит с слабым голубым оттенком. Мощность таких ламп рекомендуется выбирать больше, так как с такой температурой света маломощная лампа светит тускло.
  • 6000-6500К - дневной. Свечение ламп соответствует люминесцентным трубкам большой мощности.

Срок службы

Некоторые производители весьма не дешевых энергосберегающих ламп дают гарантии, на 12000-15000 часов работы их продукции. Лампы средней ценовой категории работают до 6000-10000 часов. Самый бюджетный вариант имеет срок службы 3000-4000 часов, что порой не соответствует действительности.

Коэффициент цветопередачи

Немаловажный коэффициент, чем он выше - тем лучше. Минимальное необходимое значение R=82. Если коэффициент ниже, чем 82, то создаётся эффект затуманенности, тени от такого света получаются не чёткие, оттенки предметов белого цвета - резкие с зелёноватыми или синими бликами. Глядя на лампочку с низким R, ловишь «зайчиков» в глазах, как от взгляда на сварку или на солнце.

Недостатки
К недостаткам можно отнести экологическую частоту, мы все прекрасно знаем что пары ртути - это яд, поэтому разбивать энергосберегающие лампы крайне не рекомендуется. Также нужно отметить, что бракованные компактные люминесцентные лампы - не редкость. Как правило, брак часто встречается в бюджетной категории товаров из-за не совершенства технологии производства, и большой процент дешёвых ламп умирает или начинает гореть тускло после первых 1000 часов работы.
Рекомендации
Для продления жизни энергосберегающих ламп, существуют определённые рекомендации по использованию, которые помогут продлить срок их службы. Как и для обычных ламп накаливания, на сроке жизни энергосберегающих сказываются частые включения и выключения, рекомендуется выключать лампочку не менее, чем после 5-10 минут работы.
Нельзя использовать энергосберегающие лампы с устройствами плавного старта или защитными блоками от скачков напряжения, которые используют с обычными лампами накаливания.

Также рекомендуется использовать энергосберегающие лампы с интегрированной системой плавного старта, так как такой вид включения продлит срок службы, на несколько тысяч часов. Первых пару минут лампа будет разогреваться, гореть не на полную мощность.
Экономия
Несмотря на изначально высокую цену, КЛЛ становиться более экономным и практичным решением. Произведем небольшой расчет перехода с обычных ламп накаливания на энергосберегающие:
Средний срок службы лампы накаливания около 1000 часов, аналогичной энергосберегающей - 6000 часов. Стоимость лампы накаливания - 15 рублей, энергосберегающей лампы - 120 рублей. Мощности ламп - 100 W и 20 W соответственно. Стоимость электроэнергии возьмём 2 рубля за 1 кВ/ч. За 6000 часов работы вам нужно 6 обычных ламп по 15 рублей, что равно 90 руб. За 6000 часов работы 6 лампочек по 100W сожгут 600 кВ/ч. энергии по 2 рубля, а это равно 1200 рублей. Итого получаем 90+1200=1290 рублей.

Энергосберегающая лампа стоит 120 руб. мощность составляет 20W, получается, что за 6000 часов работы она израсходует 120 кВ/ч на 240 рублей. Итого получаем 120+240=360 рублей.

Затраты получаются в 3,5 раза ниже. На практике этот показатель может быть как больше, так и меньше. А выводы делайте сами.

Пассивные дома

В Европе одним из основных трендов в развитии жилищного строительства становится создание пассивных домов. Основные их преимущества - минимальные затраты на отопление и здоровый микроклимат.

Пассивные дома - это достаточно новый стандарт для жилых строений. Благодаря утеплению и герметизации оболочки здания, затраты на отопление в нем ничтожно малы и нет нужды в привычных системах отопления. Тема пассивных домов так популярна сегодня в Германии и Австрии, что можно говорить о начале тихой домостроительной революции. За десятилетие там построено более 16 тыс. таких домов, причем в последние три-четыре года объемы растут экспоненциально. Требования к эффективности зданий в Германии постоянно ужесточаются, все чаще можно услышать, что через несколько лет пассивные дома могут стать обязательным общегерманским стандартом. Другие дома строить не будут вовсе.

В основе концепции пассивного дома очень простой эффект - автономное пространство, откуда не выходит тепло, можно отопить всего одной свечой. По аналогии: для дома-термоса, не имеющего тепловых потерь, даже в морозы будет достаточно тепла человека (в сутки человеческое тело выделяет 100 кВт тепловой энергии), солнечной энергии и энергии, выделяемой электроприборами.

В середине 1980-х годов германский инженер-физик Вольфанг Файст сделал математические расчеты дома-термоса, который не надо было бы обогревать. Главный результат расчетов в том, что такой пассивный дом оказался не математическим феноменом, а вполне реальной вещью. В частности, для эффективного утепления здания не нужны толстые кирпичные стены - достаточно слоя утеплителя менее полуметра.

Для проверки расчетов Файста в 1991 году в Дармштадте был построен первый пассивный дом. Детальное изучение подтвердило: здание действительно практически не потребляет тепла. Экспериментальный дом оказался всего на 25% дороже обычного здания, что вполне приемлемо для первого образца. В середине 1980-х независимо от Файста подобные расчеты сделал и российский физик Юрий Лапин. Однако отечественное градостроительное начальство посчитало, что такого не может быть в принципе, и идею даже проверять не стали.

Уже в первом пассивном здании доктора Файста были сформулированы пять основных принципов пассивного дома. Принцип первый - хорошая теплоизоляция всех частей здания. Для утепления стен, кровли и фундамента в климате центральной части Германии достаточно высокоэффективных утеплителей толщиной 30-40 сантиметров, что по тепловым свойствам эквивалентно кирпичной кладке толщиной шесть-восемь метров.

Второй - использование трех камерных стеклопакетов с низким показателем теплопередачи. Третий - особое внимание уделяется тонкой работе с так называемыми мостиками холода (стыки элементов, металлические части, углы здания), через которые тепло активно уходит. Например, металлические детали заменяются пластиковыми. Четвертый - проводится герметизация здания, и оно действительно становится термосом, не выпускающим воздух.

Правда, тут возникает проблема: люди дышат, а значит, необходима постоянная подача свежего воздуха. В советской практике предполагалось, что вентиляция помещений происходит естественно - через форточки и щели в окнах-дверях. Понятно, что для герметичного пассивного дома такой подход неприемлем, так как зимой здание будет терять тепло. Выход был найден в системе искусственной вентиляции с рекуператорами-теплообменниками. Это и есть пятый принцип возведения пассивного дома.

Свежий воздух подается в постройку по трубе, проходит через теплообменник, где забирает часть тепла у выходящего воздуха, имеющего комнатную температуру. В пассивных домах уровень рекуперации достигает 75%, а значит, выходящий воздух передает значительную часть энергии входящему. Зимой входящий воздух, если это необходимо, дополнительно подогревается. То есть система отопления в зданиях все-таки есть, но она воздушная и потребляющая мало энергии.

Результат: необходимость в отоплении пространства резко снижается. Критерием пассивного дома является потребление тепловой энергии - 15 кВт на один квадратный метр в год. Это в десять раз меньше, чем у рядовых германских зданий 1950-1980-х годов постройки и в 10-15 раз меньше, чем у советских домов, возведенных в 1970-х. Наконец, пассивные европейские дома потребляют в пять-семь раз меньше тепловой энергии, чем современные российские здания. Можно посчитать и по-другому: для отопления 30-метровой комнаты пассивного дома достаточно энергии 30 свечей.

В первом пассивном доме был еще один элемент, от которого впоследствии отказались. В нем попытались использовать энергию земли. Воздухозаборник ставился на некотором расстоянии от здания, и свежий воздух сначала шел по подземной трубе. Проходя под землей, где даже в сильные морозы температура остается плюсовой, воздух прогревался. Система работала, но после расчетов и экспериментов от данного элемента решили отказаться - слишком дорого.

Отказ этот весьма показателен. Суть пассивного дома в его экономичности. Немцы постоянно проверяли идеи на практике, различные способы экономии и производства энергии сравнивались по их цене за 1 кВт - в результате были приняты те принципы технологии «пассивный дом», которые дают максимальный финансовый эффект. Так, расчеты Института пассивных домов показали, что эффективнее вкладывать деньги в экономию энергии, чем в ее производство, что в Германии при строительстве дома с нуля выгоднее инвестировать средства в системы пассивного дома, чем, к примеру, в установку солнечных батарей.

Именно соображения экономии заставили немцев остановиться на базовом показателе затрат на отопление в 15 кВт на один метр в год. В принципе этот показатель можно снизить, но расчеты Института пассивных домов продемонстрировали, что именно при 15 кВт чисто математически достигается экстремум по показателю «эффект/затраты». Если пытаться снизить до нуля затраты на тепло, резко возрастают затраты на строительство и сложность системы.

Сегодня в мире строится немало экодомов, в том числе и довольно экзотических. В них применяются необычные материалы, солнечные батареи, ветряки и так далее. Есть стандарт домов так называемого нулевого потребления, когда здания полностью автономны, обеспечивают себя энергией. На фоне красивых картинок и ярких концептов пассивные дома могут показаться суховатыми. Но простота пассивных домов продуманная: из системы недрогнувшей рукой вычеркнуты все недостаточно практичные элементы. При этом система открытая, хозяин, естественно, может добавить в свой дом любой дополнительный элемент.

И именно этой эффективностью вызван успех пассивных домов на рынке. Если еще десять лет назад в год строились десятки таких зданий, то в последние три-пять лет, ежегодно возводятся уже тысячи домов. Львиная доля пассивных домов строится в Германии и Австрии. В Вене уже 20% новостроек возводится именно так. Начато строительство огромного муниципального района на 200 тыс. жилых «пассивных» единиц. В последние годы все больше пассивных домов появляется в Дании и Франции, созданы прототипы в Испании, Турции.

Для энергоэффективных домов разрабатываются специальные материалы: например, стекла с переменной управляемой прозрачностью и черепицу с фотоэлементами. Ведутся исследовательские проекты по адаптации системы "пассивный дом" для стран с различным климатом.

По пассивному дому можно безошибочно определять стороны света. На юг выходят большие панорамные окна. Окна на север намного меньше. Впрочем, использовать дом как компас можно только с учетом климата страны. Большие окна на юг отражают положение в Германии, где хочется зацепить больше солнечной энергии. Энергоэффективные дома в Южной Европе, наоборот, будут ориентироваться окнами на север, чтобы защититься от лишнего тепла.

Окна - это всегда предмет компромисса. С одной стороны, через них в комнаты попадает свет и солнечная энергия, а с другой - в них велики теплопотери, которые можно радикально снизить, только вставив очень дорогие стеклопакеты. В каждом случае размер окон и их параметры по тепло- и светопередаче рассчитывают архитекторы исходя из бюджета стройки.

В целом по архитектуре пассивные дома практически не отличаются от обычных, все интересное внутри. В таком доме имеется отдельная комната для инженерного оборудования, обычно в подвале. Множество труб с воздухом и водой запаковано либо в резиновые кожухи, либо в изоляцию с фольгой - немцы решительно борются с теплопотерями. В угол ставится рекуператор размером чуть больше холодильника. В трубу с входящим воздухом монтируются места для нескольких фильтров - как в автомобиле. Фильтры периодически меняются, что гарантирует чистый воздух в доме.

В каждом пассивном доме на стене висит небольшая коробочка - пульт управления климатом. Чаще всего там два регулятора: первый задает температуру, второй регулирует скорость подачи чистого воздуха. Так что на коробочке несколько положений типа «один дома» (не менее 300л воздуха в час), «вдвоем», «вечеринка».

По себестоимости пассивный дом несколько дороже обычного. В таком доме нет котла и системы отопления - это удешевляющий момент; зато есть расходы на дополнительное утепление, герметизацию, рекуперацию и так далее. Однако, 20 лет развития технологии не прошли даром: стоимость пассивного дома резко снизилась. Если первый пассивный дом доктора Файста был дороже обычного здания на 25%, то сегодня превышение - всего 5-10%. Впрочем, ожидать дальнейшего радикального снижения себестоимости вряд ли стоит. Немецкие архитекторы пассивных домов бьются за доли процента, экономя на длине труб или разыгрывая правильную ориентацию здания по сторонам света.

Дополнительные вложения в систему «пассивный дом» окупаются в среднем через семь-десять лет за счет пониженных платежей за тепло.

Выводы. Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменениям климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к использованию нетрадиционных, альтернативных источников энергии. Они экологичны и возобновляемы, основой их служит энергия Солнца и Земли, воды и воздуха.

Неоспорима роль энергии в поддержании и дальней-шем развитии цивилизации. Сегодня активно проводятся исследования всех возможных восстанавливаемых источников энергии. В некоторых случаях результаты даже выглядят весьма оптимистично и позволяют надеяться на определенные

Изменения.

Энергия - не только одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.
Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных видов природного топлива (нефти, угля, газа и др.) исчерпаемы. Конечны также и запасы ядерного топлива - урана и тория.

Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

Список литературы

  1. Баланчевадзе В. И., Барановский А. И. Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. - М.: Энергоатомиздат, 1990.
  2. Бернер М., Рябов Е. Замени лампочку - помоги Родине // Эксперт, 21-31 декабря 2009. - №49-50.
  3. Информация об энергосбережении и повышении энергетической эффективности: проблемы, пути решения, передовой опыт // Энергосбережение и водоподготовка, 2010. - №1(63).
  4. Кириллин В. А. Энергетика. Главные проблемы: в вопросах и ответах. - М.: Знание, 1990.
  5. Нетрадиционные источники энергии. - М.: Знание, 1982.
  6. Щукин А. Энергия свечей, человека и земли // Эксперт, 5-11 октября 2009. - №38.
  7. Энергетические ресурсы мира. Под ред. П.С.Непорожнего, В.И. Попкова. - М.: Энергоатомиздат, 1995.
  8. http://www.energy-source.ru/
  9. http://www.energija.ru/
  10. http://solar-battery.narod.ru/
  11. http://dom-en.ru/

Перспективы использования альтернативных источников энергии

Традиционные источники энергии становятся неактуальными. Множество причин заставляет человечество отказываться от них. Сегодня основное внимание направлено на альтернативные способы, уже применяющиеся на практике и планируемые на будущее. Исследования продолжаются, поэтому наука движется вперёд, не останавливаясь на достигнутых результатах. Сейчас можно оценить некоторые достижения, уже давшие первые результаты, чтобы понять, насколько выгодными станут новые направления через несколько лет.

Альтернативная энергия продолжает распространяться. Причиной являются её явные преимущества перед традиционными источниками, которые сложно опровергнуть. В некоторых странах правительство ведёт сложные государственные программы с колоссальными денежными вложениями для постепенной замены, но пока результаты остаются незначительными.



Какие основные виды можно выделить?
  • Энергия молнии;
  • Энергия атома.

Бесконечные исследования позволяют сопоставить возможности, предлагаемые природой. Человечество продолжает искать новые направления, которые в будущем наверняка превратятся в идеальную замену традиционных источников. Подробное описание даст общую информацию, а также укажет, какие виды уже нашли применение в повседневной жизни населения планеты.

Энергия солнца используется человеком давно. Первоначальные попытки делались в древние времена, когда посредством направленного луча люди зажигали дерево. Современные способы основываются на использовании больших площадей батарей, собирающих потоки для последующей обработки и накопления в аккумуляторах.


При помощи такой энергии летают все космические станции и спутники. На орбите доступ к звезде открыт, но и на Земле некоторые страны активно пользуются новым источником. Одним из примеров являются целые «поля» батарей, обеспечивающие небольшие городки. Хотя намного интереснее рассмотреть новые небольшие автономные источники, где площадь поверхности не превышает крыши маленького дома. Они устанавливаются в частном порядке по всему миру, чтобы осуществлять отопление без лишних затрат.

Энергия ветра используется человечеством испокон веков. Лучшим примером этого являются парусники, двигающиеся за счёт постоянного воздушного потока. Теперь научные исследования позволили создать специальные генераторы, обеспечивающие электричеством целые города. Причём они работают по двум принципам:

  • Автономно;
  • Параллельно с основной сетью.



В обоих случаях удаётся постепенно заменять традиционный источник, сокращая пагубное воздействие на окружающую среду. Сейчас можно оценить достигнутые результаты, подтверждающие правильность выбора. Данные подсказывают, что в Дании 25% получаемой энергии приходится именно на ветряные электростанции. Многие страны стараются постепенно перейти на новые источники, но это возможно только на открытых пространствах. Из-за чего в отдельных районах использование лучшего варианта остаётся недоступным.

Энергия воды остаётся незаменимой. Раньше она применялась на простых мельницах и кораблях, а сейчас огромные турбинные ГЭС поставляют электричество в целых регионах. Последние разработки предлагают человечеству познакомиться с фантастическим будущим, которое будет построено на новейших источниках. Какие альтернативы уже используются странами?

  • Приливные электростанции;
  • Волновые электростанции;
  • Микро и мини ГЭС;
  • Аэро ГЭС.

Приливные электростанции используют энергию приливов. Их высота и мощь зависит от воздействия Луны, поэтому стабильность подачи остаётся некоторой проблемой. Хотя во Франции, Индии, Великобритании и нескольких других государствах проект воплощён в жизнь и успешно используется в качестве незаменимой поддержки.



Волновые электростанции строятся на берегах океанов, где мощь регулярных ударов о побережье превышают мыслимые пределы. В этом случае ограничением становится недостаточная сила. Она не позволяет получить достаточное количество энергии.

Микро и мини ГЭС подходят для узких горных рек. Их небольшие размеры позволяют свободно найти время, а их мощность подходит для обеспечения маленьких поселений. Опытные модели проверены, поэтому сейчас строятся действующие объекты, обладающие неплохими показателями.

Аэро ГЭС – новейшая технология, которая пока ещё проходит проверку. Она основана на конденсации влаги из атмосферы. Действующие установки пока остаются призрачной мечтой, но есть определённые показатели, подтверждающие целесообразность вложения денежных средств в разработки.

Геотермальная энергия остаётся распространённой. Такой альтернативный источник используется несколькими различными способами. Он остаётся одним из самых интересных для определённых регионов, поэтому отказ от неё не имеет смысла. Единственной проблемой является высокая стоимость установок, что ограничивает их количество. Какие варианты возможны?

  • Тепловые электростанции;
  • Грунтовые теплообменники.


Энергия молнии

Энергия молнии – новое веяние. Это направление только начинает разрабатываться, но учёные утверждают, что есть возможность использования доступных гигаватт. Они теряются впустую, уходя в грунт. Американская компания приступила к исследованиям, которые ориентированы на создание специальных установок для улавливания гроз.

Энергия молнии – мощный источник, способный обеспечить электроэнергией крупный район мегаполиса. Ориентировочные денежные затраты на строительство должны окупаться в течение 5─7 лет, так что целесообразность подобных вложений остаётся неоспоримой. Остаётся только дождаться окончания исследований для внедрения новой технологии в широкий обиход.

Сегодня в мире основными источниками энергии выступают: уголь, нефть и природный газ. Все это топливо ископаемое, поскольку происходит оно из окаменевших остатков животных и растений, существующих на земном шаре много миллионов лет назад. Такое топливо используют для обогрева жилья, других зданий, для транспортных средств. Топливо ископаемое является ресурсом необновляемым. То есть на Земле ограничено количество всех этих видов топлива.

По этой причине ученые работают постоянно над поиском других источников энергии, количество которых ограничено не будет. Источники энергии, имеющие свойство возобновляться, являются более чистыми, они не оказывают на окружающую среду такого пагубного воздействия, как ископаемое топливо. К альтернативным источникам энергии относят: солнечную энергию, гидроэнергетику и ветер.

При помощи солнечных батарей можно накапливать солнечное тепло и использовать его для обогрева жилых домов и других зданий. Текущая вода тоже вырабатывает энергию. При падении вниз, вода вращает турбину приводя генератор в действие, который и вырабатывает электричество. Турбины еще применяют для преобразования энергии ветра в электричество.

Ядерная энергия является одним из важных источников энергии, она выделяется при расщеплении атомного ядра. Для производства энергии с помощью возобновляемых источников, ученые еще не решили проблему, которая связана с удешевлением технологии производства такой энергии.

Вы прочитали ответ на вопрос Какие бывают источники энергии? и если понрвился материал то запиши в закладки - » Какие бывают источники энергии? ? .
    Важен ли для нас фотосинтез? Все живое на Земле существует благодаря солнечной энергии. Освещенные лучами солнца растения как бы тянутся к нему и накапливают питательные вещества - углеводы. Этот процесс называется фотосинтезом. В свою очередь люди и животные, потребляя в пищу растения, черпают из них необходимую для жизни энергию. Мощь солнца доходит до нас в виде тепла и света. Тепло рождает ветер, а ветер пригоняет дождевые тучи, вода из которых необходима Как устроен атомный реактор? В атомном реакторе используется энергия, получаемая в результате распада урана. Она дает тепло, с помощью которого вырабатывается электричество. Это принцип работы всех атомных электростанций. Атомный реактор это огромный котел, который вырабатывает водяной пар. Пар в свою очередь вращает турбогенератор, дающий ток. Отдавая энергию, атомное топливо не исчезает. Оно может использоваться в других отраслях атомной энергетики. Атомный реактор был создан в 1942 году в Чикаго (США) Энрико Ферми.

Альтернативная энергетика - совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативный источник энергии - способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

Виды альтернативной энергетики : солнечная энергетика, ветроэнергетика, биомассовая энергетика, волновая энергетика, градиент-температурная энергетика, эффект запоминания формы, приливная энергетика, геотермальная энергия.

Солнечная энергетика - преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию.

Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат "солнечный котел", турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей : низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.

Геотермальная энергетика - способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию.

Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2-3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции.

Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.

Стоимость "топлива" такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы.

К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.

Ветроэнергетика - это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).

Ветряная электростанция - установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др.

Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.

Волновая энергетика - способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора.

По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью . Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха - до 85 процентов.

Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн - перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор.

Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит.

Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

Градиент-температурная энергетика . Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии.

Большинство градиент-температурных электростанций расположено на морском побережье и используют для работы морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт.

Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Биомассовая энергетика . При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии и пр.

Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших "чанов", куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы.

Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей.

Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).

Эффект запоминания формы - физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году.

Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии).

Основным недостатком эффекта восстановления формы является низкий КПД - всего 5-6 процентов.

Материал подготовлен на основе информации открытых источников

Без электроэнергии жизнь любого дома практически немыслима: электричество помогает в приготовлении пищи, отоплении помещения, закачке в него воды и в простом освещении. Но что делать, если там, где вы живете, еще нет коммуникаций, то на помощь придут альтернативные источники электроэнергии.


В нашем обзоре мы собрали несколько распространенных в быту альтернативных источников электричества, которые широко применяются как в России, так и в европейских странах и на американском континенте. Во многом они, конечно, дороже и более сложны в эксплуатации, чем центральная энергосеть; однако финансовые вложения будут полностью оправданы качественной и надежной службой, а также созданием благоприятной экологической среды.

Электрогенераторы

Самый популярный в России альтернативный источник энергии, который больше всего востребован в частных загородных домах. По типу используемого горючего электрогенераторы бывают дизельными, бензиновыми и газовыми.

Дизельные генераторы обладают массой преимуществ, среди которых экономичность, надежность и небольшой риск возникновения пожара. Если использовать дизельный генератор регулярно, то он гораздо выгодней моделей, работающих на газе или на бензине. Расход топлива дизельного оборудования не велик, цена на дизель также держится на невысоком уровне, он не потребует дорогостоящего ремонта.


Недостатки дизельного генератора – большое количество газов, выделяемых при работе, шум и высокая стоимость самого аппарата. Цена «среднего» оборудования с выходной мощностью около 5 кВт в среднем составляет около 23 000 рублей; впрочем, за одно лето работы он полностью себя окупает.

Бензиновый генератор идеально подойдет как резервный или сезонный источник тока. По сравнению с дизельными, бензиновые генераторы имеют небольшие размеры, издают мало шума при работе, и по стоимости ниже - средняя цена бензинового генератора мощностью 5 кВт колеблется в диапазоне 14 -17 тысяч рублей. Недостаток у бензинового генератора – большой расход топлива, да и высокий уровень выделяемого углекислого газа потребует от вас размещения электрогенератора в отдельном помещении.


Газовые генераторы – пожалуй, самые «выгодные» для применения в быту модели, которые отлично рекомендовали себя со всех сторон: они могут работать как от природного газа, так и от сжиженного топлива в баллонах. Уровень шума данного прибора очень низкий, а долговечность самая высокая; при этом цены лежат в умеренном диапазоне: за «домашний» прибор мощностью около 5 кВт придется отдать около 18 тысяч рублей.

Жизнь под солнцем

С каждым годом все популярнее становится еще один альтернативный источник электроэнергии – энергия солнца. Ее можно использовать не только для выработки электрической энергии, но и для обеспечения автономного отопления. На крышу, а иногда и на стены, устанавливаются солнечные батареи различной площади, которые имеют аккумулятор и инвертор; некоторое время назад мы писали об инновационной технологии – черепице со встроенными фотоэлементами (). Вот преимущества, которые обеспечивают солнечные батареи:
  • Использование возобновляемого источника энергии;
  • Абсолютно бесшумная работа;
  • Экологическая безопасность, отсутствие каких-либо выбросов в атмосферу;
  • Простой монтаж, возможность самостоятельной установки.

Особенно часто можно встретить солнечные батареи на европейском и российском юге, где количество солнечных дней и зимой, и летом превышает количество пасмурных. Но есть и свои нюансы, о которых также необходимо помнить:

Даже при самом «солнечном» раскладе погоды суммарная мощность всех установленных фотоэлементов вряд ли превысит 5-7 кВт в час. Поэтому, если учитывать хотя бы приблизительную оценку, что на обогрев дома требуется энергия из расчета 1 кВт на 10 квадратных метров, то получаем, что на полностью «солнечном» питании может жить только небольшой дачный домик; двух-трехэтажные дома все-таки потребуют от вас дополнительных источников энергии, особенно если расход воды и света также велик.


Но даже если домик маленький, то на установку оборудования придется выделить не менее 10 квадратных метров земли, поэтому на стандартных шести сотках с огородом и садом это представляется маловероятным.

И, конечно, есть вполне «природные» сложности – это зависимость от суточных и сезонных колебаний солнечного излучения: никто не гарантирует нам солнечной погоды даже летом. И еще один момент: хоть сами фотоэлементы и не выделяют токсичных веществ при работе, однако их утилизация не так проста, нужно сдавать их в специальные приемные пункты – так же, как и отработанные батарейки.




Стоимость готовой станции начинается от 100 тысяч рублей, что тоже устраивает далеко не всех. Впрочем, солнечную энергию можно использовать и более «дешевым» способом: установить на участок коллектор для нагрева воды – он будет улавливать тепло в дневное время даже в пасмурные и дождливые дни. В принципе, суточную потребность в горячей воде коллектор для нагрева полностью удовлетворяет, а цена его начинается от 30 000 рублей. Но этот вид оборудования не вырабатывает электричество и способен функционировать только в южных регионах, где солнечная активность достаточно высока.

С ветерком!

Установки для преобразования ветряной энергии в электричество уже не являются фантастическим техногенным будущим – достаточно посмотреть на поля в Германии и в Голландии, чтобы убедиться в повсеместном распространении ветряков.


Немного школьной физики: кинетическая энергия ветра преобразуется в механическую энергию вращения турбины, а инвертор, в свою очередь, генерирует переменный ток. Необходимо помнить вот о чем: минимальная скорость ветра, при которой будет образовываться электричество от маховика – 2 м/с, а оптимально, если скорость ветра будет в районе 5– 8 м/с; именно поэтому ветрогенераторы особенно популярны в северо-западных регионах Европы, где среднегодовая скорость ветра весьма высока. По типу конструкции ветряные генераторы различаются на горизонтальные и вертикальные: это зависит от крепления ротора.

Горизонтальная конструкция генератора хороша высоким показателем КПД, при монтаже будет использоваться небольшое количество материалов. Но придется столкнуться с некоторыми трудностями: для монтажа потребуется высокая мачта, а сам генератор имеет сложную механическую часть, и ремонт может быть очень сложным.


Вертикальные генераторы могут функционировать в большем диапазоне скоростей ветра; но при этом их установка гораздо сложнее, и для крепления мотора понадобится дополнительная фиксация.


Чтобы сгладить разницу между ветреным сезоном и штилем и питать дом электрическим током бесперебойно, ветряная станция обычно снабжается накопительным аккумулятором. Еще одной альтернативой установки аккумуляторной батареи к ветряной станции станет водонакопительный бак, который используется как для отопления, так и для горячего водоснабжения. В таком случае вам удастся немного сэкономить на покупке – впрочем, стоимость ветрогенератора все равно останется высокой: около 300 тысяч рублей, без аккумулятора – около 250 тысяч.

Еще один нюанс, который следует учитывать при обустройстве ветряной станции – необходимость создания фундамента под оборудование. Фундамент нужно укреплять с особенной тщательностью, если в вашей местности скорость ветра периодически превышает 10 -15 метров в секунду. А в зимний период необходимо будет следить, чтобы лопасти ветростанции не обледеневали, это сильно снижает КПД. Кроме того, вибрации и шум от работы ветряка становятся причиной того, что станцию желательно размещать не менее чем в 15 метрах от жилого дома.

Живая польза

О биотопливе как об «экологической технологии будущего» сейчас говорят везде и всюду. Вокруг него разгорелась масса споров и противоречивых отзывов: оно привлекательно в качестве топлива для машин, так как имеет привлекательную цену, но при этом многие водители подозревают негативное влияние биоматериала на мотор и мощность. Оставим в стороне автомобильные проблемы: ведь биотопливо может использоваться не только в качестве горючего для транспортных средств, но и как источник электрического тока: им можно заменить газ, бензин и дизель при заправке оборудования.


Биотопливо производится путем переработки растительных остатков – стеблей и семян. Для изготовления биологического дизеля применяют жиры из семян масляных культур, а бензин производят путем ферментации кукурузы, сахарного тростника, свеклы и других растений. Наиболее оптимальным источником биологической энергии признаны водоросли, так как они неприхотливы в выращивании и легко превращаются в биомассу с похожими на нефть маслянистыми свойствами.


По данной технологии также получают биологический газ, который собирают при брожении органических отходов пищевой промышленности и животноводства: на 95 % он состоит из метана. Экологические технологии позволяют собирать природный газ на...свалках! 1 тонна бесполезного мусора производит до 500 кубометров полезного газа, который потом превращается в целлюлозный этанол.

Если говорить о бытовом использовании биотоплива для выработки электрической энергии, то для этой цели нужно приобрести индивидуальную биогазовую установку, которая будет вырабатывать природный газ из отходов. Понятно, что этот вариант реализуем только в загородном доме, где есть собственная свалка биологических отходов на улице.

Стандартная установка даст вам от 3 до 12 кубометров газа в сутки; полученный газ затем может использоваться для отопления дома и заправки различного оборудования, в том числе и газового генератора электроэнергии, о котором мы писали выше. К сожалению, биогазовые установки пока что доступны не повсеместно: отдать за нее придется как минимум 250 000 рублей.

Приручить поток

Если у вас есть в распоряжении собственная проточная вода (участок ручья или речки), то хорошим решением станет строительство индивидуальной ГЭС. По монтажу этот тип генераторов энергии относится к самым сложным, зато его КПД значительно выше, чем у всех вышеописанных источников – и ветряных, и солнечных, и биологических. ГЭС могут быть плотинными и бесплотинными, второй вариант более распространен и доступен – часто можно встретить синонимичное название «проточная станция». По своему устройству станции делятся на несколько типов:

Наиболее оптимальный и распространенный вариант, который подходит для изготовления своими руками – это станция с пропеллером или колесом; можно найти в интернете массу инструкций и полезных советов.

Самым же сложным и неудобным решением будет гирляндная установка: она имеет невысокую производительность, довольно опасна для окружающих людей, а монтаж станции потребует расхода большого количества материалов и много времени. В этом плане ротор Дарье более удобен, так как ось расположена вертикально, а установить ее можно над водой. При этом смонтировать такую станцию будет сложно, а ротор при старте необходимо вручную раскручивать.

Если приобретать готовую мини-ГЭС, то ее средняя стоимость составит около 200 тысяч рублей; самостоятельный сбор комплектующих сэкономит до 30% стоимости, но потребует много времени и сил. Что из этого лучше – решать только вам.